Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation.

نویسندگان

  • Shabana Din
  • Matthew Mason
  • Mirko Völkers
  • Bevan Johnson
  • Christopher T Cottage
  • Zeping Wang
  • Anya Y Joyo
  • Pearl Quijada
  • Peter Erhardt
  • Nancy S Magnuson
  • Mathias H Konstandin
  • Mark A Sussman
چکیده

Mitochondrial morphological dynamics affect the outcome of ischemic heart damage and pathogenesis. Recently, mitochondrial fission protein dynamin-related protein 1 (Drp1) has been identified as a mediator of mitochondrial morphological changes and cell death during cardiac ischemic injury. In this study, we report a unique relationship between Pim-1 activity and Drp1 regulation of mitochondrial morphology in cardiomyocytes challenged by ischemic stress. Transgenic hearts overexpressing cardiac Pim-1 display reduction of total Drp1 protein levels, increased phosphorylation of Drp1-(S637), and inhibition of Drp1 localization to the mitochondria. Consistent with these findings, adenoviral-induced Pim-1 neonatal rat cardiomyocytes (NRCMs) retain a reticular mitochondrial phenotype after simulated ischemia (sI) and decreased Drp1 mitochondrial sequestration. Interestingly, adenovirus Pim-dominant negative NRCMs show increased expression of Bcl-2 homology 3 (BH3)-only protein p53 up-regulated modulator of apoptosis (PUMA), which has been previously shown to induce Drp1 accumulation at mitochondria and increase sensitivity to apoptotic stimuli. Overexpression of the p53 up-regulated modulator of apoptosis-dominant negative adenovirus attenuates localization of Drp1 to mitochondria in adenovirus Pim-dominant negative NRCMs promotes reticular mitochondrial morphology and inhibits cell death during sI. Therefore, Pim-1 activity prevents Drp1 compartmentalization to the mitochondria and preserves reticular mitochondrial morphology in response to sI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1.

While the subcellular organisation of mitochondria is likely to influence many aspects of cell physiology, its molecular control is poorly understood. Here, we have investigated the role of the retrograde motor protein complex, dynein-dynactin, in mitochondrial localisation and morphology. Disruption of dynein function, achieved in HeLa cells either by over-expressing the dynactin subunit, dyna...

متن کامل

Oxidative stress-induced mitochondrial fragmentation and movement in skeletal muscle myoblasts.

Mitochondria are dynamic organelles, capable of altering their morphology and function. However, the mechanisms governing these changes have not been fully elucidated, particularly in muscle cells. We demonstrated that oxidative stress with H2O2 resulted in a 41% increase in fragmentation of the mitochondrial reticulum in myoblasts within 3 h of exposure, an effect that was preceded by a reduct...

متن کامل

YiQiFuMai Powder Injection Protects against Ischemic Stroke via Inhibiting Neuronal Apoptosis and PKCδ/Drp1-Mediated Excessive Mitochondrial Fission

YiQiFuMai (YQFM) powder injection has been reported to be used in cardiovascular and nervous system diseases with marked efficacy. However, as a treatment against diseases characterized by hypoxia, lassitude, and asthenia, the effects and underlying mechanisms of YQFM in neuronal mitochondrial function and dynamics have not been fully elucidated. Here, we demonstrated that YQFM inhibited mitoch...

متن کامل

Dynamin-related protein 1 controls the migration and neuronal differentiation of subventricular zone-derived neural progenitor cells

Mitochondria are important in many essential cellular functions, including energy production, calcium homeostasis, and apoptosis. The organelles are scattered throughout the cytoplasm, but their distribution can be altered in response to local energy demands, such as cell division and neuronal maturation. Mitochondrial distribution is closely associated with mitochondrial fission, and blocking ...

متن کامل

Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria.

Changes in mitochondrial morphology that occur during cell cycle, differentiation, and death are tightly regulated by the balance between fusion and fission processes. Excessive fragmentation can be caused by inhibition of the fusion machinery and is a common consequence of dysfunction of the organelle. Here, we show a role for calcineurin-dependent translocation of the profission dynamin relat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 15  شماره 

صفحات  -

تاریخ انتشار 2013